
Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 22: Distributed Databases

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan22.2Database System Concepts - 5th Edition, Aug 22,
2005.

Chapter 22: Distributed Databases

● Heterogeneous and Homogeneous Databases

● Distributed Data Storage
● Distributed Transactions
● Commit Protocols
● Concurrency Control in Distributed Databases
● Availability
● Distributed Query Processing
● Heterogeneous Distributed Databases
● Directory Systems

©Silberschatz, Korth and Sudarshan22.3Database System Concepts - 5th Edition, Aug 22,
2005.

Distributed Database System

● A distributed database system consists of loosely coupled sites that share
no physical component

● Database systems that run on each site are independent of each other

● Transactions may access data at one or more sites

©Silberschatz, Korth and Sudarshan22.4Database System Concepts - 5th Edition, Aug 22,
2005.

Homogeneous Distributed Databases

● In a homogeneous distributed database

● All sites have identical software

● Are aware of each other and agree to cooperate in processing user
requests.

● Each site surrenders part of its autonomy in terms of right to
change schemas or software

● Appears to user as a single system

● In a heterogeneous distributed database

● Different sites may use different schemas and software

4 Difference in schema is a major problem for query processing

4 Difference in software is a major problem for transaction
processing

● Sites may not be aware of each other and may provide only
limited facilities for cooperation in transaction processing

©Silberschatz, Korth and Sudarshan22.5Database System Concepts - 5th Edition, Aug 22,
2005.

Data Replication

● A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites.

● Full replication of a relation is the case where the relation is stored at
all sites.

● Fully redundant databases are those in which every site contains a
copy of the entire database.

©Silberschatz, Korth and Sudarshan22.6Database System Concepts - 5th Edition, Aug 22,
2005.

Data Replication (Cont.)

● Advantages of Replication

● Availability: failure of site containing relation r does not result in
unavailability of r is replicas exist.

● Parallelism: queries on r may be processed by several nodes in parallel.

● Reduced data transfer: relation r is available locally at each site
containing a replica of r.

● Disadvantages of Replication
● Increased cost of updates: each replica of relation r must be updated.
● Increased complexity of concurrency control: concurrent updates to

distinct replicas may lead to inconsistent data unless special
concurrency control mechanisms are implemented.

4 One solution: choose one copy as primary copy and apply
concurrency control operations on primary copy

©Silberschatz, Korth and Sudarshan22.7Database System Concepts - 5th Edition, Aug 22,
2005.

Data Fragmentation

● Division of relation r into fragments r1, r2, …, rn which contain sufficient
information to reconstruct relation r.

● Horizontal fragmentation: each tuple of r is assigned to one or more
fragments

● Vertical fragmentation: the schema for relation r is split into several
smaller schemas

● All schemas must contain a common candidate key (or superkey) to
ensure lossless join property.

● A special attribute, the tuple-id attribute may be added to each
schema to serve as a candidate key.

● Example : relation account with following schema

● Account = (account_number, branch_name , balance)

©Silberschatz, Korth and Sudarshan22.8Database System Concepts - 5th Edition, Aug 22,
2005.

Horizontal Fragmentation of account Relation

branch_nameaccount_numbe
r

balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = σbranch_name=“Hillside” (account)

branch_nameaccount_numbe
r

balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = σbranch_name=“Valleyview” (account)

©Silberschatz, Korth and Sudarshan22.9Database System Concepts - 5th Edition, Aug 22,
2005.

Vertical Fragmentation of employee_info Relation

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info)

1
2
3
4
5
6
7

account_numbe
r

balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = Πaccount_number, balance, tuple_id (employee_info)

©Silberschatz, Korth and Sudarshan22.10Database System Concepts - 5th Edition, Aug 22,
2005.

Advantages of Fragmentation

● Horizontal:

● allows parallel processing on fragments of a relation

● allows a relation to be split so that tuples are located where they are
most frequently accessed

● Vertical:

● allows tuples to be split so that each part of the tuple is stored where
it is most frequently accessed

● tuple-id attribute allows efficient joining of vertical fragments

● Vertical and horizontal fragmentation can be mixed.

● Fragments may be successively fragmented to an arbitrary depth.

● Replication and fragmentation can be combined

● Relation is partitioned into several fragments: system maintains
several identical replicas of each such fragment.

©Silberschatz, Korth and Sudarshan22.11Database System Concepts - 5th Edition, Aug 22,
2005.

Data Transparency

● Data transparency: Degree to which system user may remain unaware
of the details of how and where the data items are stored in a distributed
system

● Consider transparency issues in relation to:

● Fragmentation transparency

● Replication transparency

● Location transparency

● Naming of data items: criteria

1. Every data item must have a system-wide unique name.

2. It should be possible to find the location of data items efficiently.

3. It should be possible to change the location of data items
transparently.

4. Each site should be able to create new data items autonomously.

©Silberschatz, Korth and Sudarshan22.12Database System Concepts - 5th Edition, Aug 22,
2005.

Centralized Scheme - Name Server

● Structure:

● name server assigns all names

● each site maintains a record of local data items

● sites ask name server to locate non-local data items

● Advantages:

● satisfies naming criteria 1-3

● Disadvantages:

● does not satisfy naming criterion 4

● name server is a potential performance bottleneck

● name server is a single point of failure

©Silberschatz, Korth and Sudarshan22.13Database System Concepts - 5th Edition, Aug 22,
2005.

Use of Aliases

● Alternative to centralized scheme: each site prefixes its own site
identifier to any name that it generates i.e., site 17.account.

● Fulfills having a unique identifier, and avoids problems associated
with central control.

● However, fails to achieve network transparency.

● Solution: Create a set of aliases for data items; Store the mapping of
aliases to the real names at each site.

● The user can be unaware of the physical location of a data item, and
is unaffected if the data item is moved from one site to another.

©Silberschatz, Korth and Sudarshan22.14Database System Concepts - 5th Edition, Aug 22,
2005.

Distributed Transactions

● Transaction may access data at several sites.

● Each site has a local transaction manager responsible for:

● Maintaining a log for recovery purposes

● Participating in coordinating the concurrent execution of the
transactions executing at that site.

● Each site has a transaction coordinator, which is responsible for:

● Starting the execution of transactions that originate at the site.

● Distributing subtransactions at appropriate sites for execution.

● Coordinating the termination of each transaction that originates at
the site, which may result in the transaction being committed at
all sites or aborted at all sites.

©Silberschatz, Korth and Sudarshan22.15Database System Concepts - 5th Edition, Aug 22,
2005.

Transaction System Architecture

©Silberschatz, Korth and Sudarshan22.16Database System Concepts - 5th Edition, Aug 22,
2005.

System Failure Modes

● Failures unique to distributed systems:

● Failure of a site.

● Loss of massages

4 Handled by network transmission control protocols such as
TCP-IP

● Failure of a communication link

4 Handled by network protocols, by routing messages via
alternative links

● Network partition

4 A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them

– Note: a subsystem may consist of a single node

● Network partitioning and site failures are generally indistinguishable.

©Silberschatz, Korth and Sudarshan22.17Database System Concepts - 5th Edition, Aug 22,
2005.

Commit Protocols

● Commit protocols are used to ensure atomicity across sites

● a transaction which executes at multiple sites must either be
committed at all the sites, or aborted at all the sites.

● not acceptable to have a transaction committed at one site and
aborted at another

● The two-phase commit (2PC) protocol is widely used

● The three-phase commit (3PC) protocol is more complicated and
more expensive, but avoids some drawbacks of two-phase commit
protocol. This protocol is not used in practice.

©Silberschatz, Korth and Sudarshan22.18Database System Concepts - 5th Edition, Aug 22,
2005.

Two Phase Commit Protocol (2PC)

● Assumes fail-stop model – failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.

● Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.

● The protocol involves all the local sites at which the transaction
executed

● Let T be a transaction initiated at site Si, and let the transaction
coordinator at Si be Ci

©Silberschatz, Korth and Sudarshan22.19Database System Concepts - 5th Edition, Aug 22,
2005.

Phase 1: Obtaining a Decision

● Coordinator asks all participants to prepare to commit transaction Ti.

● Ci adds the records <prepare T> to the log and forces log to
stable storage

● sends prepare T messages to all sites at which T executed

● Upon receiving message, transaction manager at site determines if it
can commit the transaction

● if not, add a record <no T> to the log and send abort T message
to Ci

● if the transaction can be committed, then:

● add the record <ready T> to the log

● force all records for T to stable storage

● send ready T message to Ci

©Silberschatz, Korth and Sudarshan22.20Database System Concepts - 5th Edition, Aug 22,
2005.

Phase 2: Recording the Decision

● T can be committed of Ci received a ready T message from all the
participating sites: otherwise T must be aborted.

● Coordinator adds a decision record, <commit T> or <abort T>, to the
log and forces record onto stable storage. Once the record stable
storage it is irrevocable (even if failures occur)

● Coordinator sends a message to each participant informing it of the
decision (commit or abort)

● Participants take appropriate action locally.

©Silberschatz, Korth and Sudarshan22.21Database System Concepts - 5th Edition, Aug 22,
2005.

Handling of Failures - Site Failure

When site Si recovers, it examines its log to determine the fate of

transactions active at the time of the failure.

● Log contain <commit T> record: site executes redo (T)

● Log contains <abort T> record: site executes undo (T)

● Log contains <ready T> record: site must consult Ci to determine the
fate of T.

● If T committed, redo (T)

● If T aborted, undo (T)

● The log contains no control records concerning T

● implies that Sk failed before responding to the prepare T message
from Ci

● Sk must execute undo (T)

©Silberschatz, Korth and Sudarshan22.22Database System Concepts - 5th Edition, Aug 22,
2005.

Handling of Failures- Coordinator Failure

● If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T’s fate:
1. If an active site contains a <commit T> record in its log, then T must

be committed.
2. If an active site contains an <abort T> record in its log, then T must

be aborted.
3. If some active participating site does not contain a <ready T> record

in its log, then the failed coordinator Ci cannot have decided to
commit T.
1. Can therefore abort T.

4. If none of the above cases holds, then all active sites must have a
<ready T> record in their logs, but no additional control records
(such as <abort T> of <commit T>).
● In this case active sites must wait for Ci to recover, to find

decision.
● Blocking problem: active sites may have to wait for failed coordinator to

recover.

©Silberschatz, Korth and Sudarshan22.23Database System Concepts - 5th Edition, Aug 22,
2005.

Handling of Failures - Network Partition

● If the coordinator and all its participants remain in one partition, the
failure has no effect on the commit protocol.

● If the coordinator and its participants belong to several partitions:

● Sites that are not in the partition containing the coordinator think
the coordinator has failed, and execute the protocol to deal with
failure of the coordinator.

4 No harm results, but sites may still have to wait for decision
from coordinator.

● The coordinator and the sites are in the same partition as the
coordinator think that the sites in the other partition have failed, and
follow the usual commit protocol.

4 Again, no harm results

©Silberschatz, Korth and Sudarshan22.24Database System Concepts - 5th Edition, Aug 22,
2005.

Coordinator Selection

● Backup coordinators

● site which maintains enough information locally to assume the
role of coordinator if the actual coordinator fails

● executes the same algorithms and maintains the same internal
state information as the actual coordinator fails executes state
information as the actual coordinator

● allows fast recovery from coordinator failure but involves
overhead during normal processing.

● Election algorithms

● used to elect a new coordinator in case of failures

● Example: Bully Algorithm - applicable to systems where every site
can send a message to every other site.

©Silberschatz, Korth and Sudarshan22.25Database System Concepts - 5th Edition, Aug 22,
2005.

Bully Algorithm

● If site Si sends a request that is not answered by the coordinator
within a time interval T, assume that the coordinator has failed Si tries
to elect itself as the new coordinator.

● Si sends an election message to every site with a higher identification
number, Si then waits for any of these processes to answer within T.

● If no response within T, assume that all sites with number greater than
i have failed, Si elects itself the new coordinator.

● If answer is received Si begins time interval T’, waiting to receive a
message that a site with a higher identification number has been
elected.

©Silberschatz, Korth and Sudarshan22.26Database System Concepts - 5th Edition, Aug 22,
2005.

Bully Algorithm (Cont.)

● If no message is sent within T’, assume the site with a higher number
has failed; Si restarts the algorithm.

● After a failed site recovers, it immediately begins execution of the
same algorithm.

● If there are no active sites with higher numbers, the recovered site
forces all processes with lower numbers to let it become the
coordinator site, even if there is a currently active coordinator with a
lower number.

©Silberschatz, Korth and Sudarshan22.27Database System Concepts - 5th Edition, Aug 22,
2005.

Semijoin Strategy

● Let r1 be a relation with schema R1 stores at site S1

Let r2 be a relation with schema R2 stores at site S2

● Evaluate the expression r1 r2 and obtain the result at S1.

1. Compute temp1 ← ∏R1 ∩ R2 (r1) at S1.
● 2. Ship temp1 from S1 to S2.
● 3. Compute temp2 ← r2 temp1 at S2

● 4. Ship temp2 from S2 to S1.

● 5. Compute r1 temp2 at S1. This is the same as r1 r2.

©Silberschatz, Korth and Sudarshan22.28Database System Concepts - 5th Edition, Aug 22,
2005.

Figure 22.3

©Silberschatz, Korth and Sudarshan22.29Database System Concepts - 5th Edition, Aug 22,
2005.

Figure 22.4

©Silberschatz, Korth and Sudarshan22.30Database System Concepts - 5th Edition, Aug 22,
2005.

Figure 22.5

©Silberschatz, Korth and Sudarshan22.31Database System Concepts - 5th Edition, Aug 22,
2005.

Figure 22.7

